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Learning Goals

• Become familiar with popular ML applications of the Shapley value

• Interpret the Shapley value and its properties in ML contexts

• Recognize the need for efficient computation of the Shapley value

• Understand key properties of common estimators / approximations
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Outline

• Applications of the Shapley value in machine learning
• Data Valuation

• Feature Attribution

• Additional applications

• Efficient computation

• Limitations
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Applications of the Shapley value in ML
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(Supervised) Machine Learning

𝒊 Name Degree Position Has dog named Peach?

1 Ruiyu MSc Student N

2 Lironne MSc Student Y

3 Sophie BSc Student N

4 Narun MSc TA N

5 Prayus BSc Student N

Cooperate in PD?
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Shruthi MSc Student N ?
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Data Attribution
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Data Attribution

• Identify the contribution of a data point to performance

• Applications:
• Data valuation/pricing

• Assessing data quality

• Identifying poisoned or mislabeled data

• Explaining the model

• Several existing approaches: leave-one-out, influence functions

• Most recently: data Shapley
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Data Attribution – a coalitional game!

• Players (𝑁): training set

• Characteristic function (𝑣):

• Performance
• measured by log-likelihood, accuracy, …

• on a test dataset or an individual test data point

𝑣 𝑆 = performance of the model trained on 𝑆 ⊆ 𝑁
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Data Shapley

• Desirable fairness properties: analogues of Shapley axioms!

• Ex: Points 𝑖, 𝑗 with identical contributions have attributions 𝜙𝑖 = 𝜙𝑗
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Use the Shapley value to quantify a point’s contribution



Data Shapley: Results
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Figures from “Data Shapley: Equitable Valuation of Data for Machine Learning” (Ghorbani and Zou 2019)



Other Solution Concepts – Beta Shapley

• Shapley values can be seen as computing

• Semi-values: compute

• Satisfy symmetry, dummy player, and additivity!?
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Other Solution Concepts – The Core

12
Figures from “If You Like Shapley Then You’ll Love the Core” (Yan and Procaccia 2021)



Feature Attribution
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Feature Attribution

• Players: features of the data

• Characteristic function: 

• Similar axiomatic motivation

• Original application: Feature selection (Cohen 2007)

• Popular application: Interpretable ML (Lundberg and Lee 2017)

• SHAP: 11,563 citations
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𝑣 𝑆 = performance of the model trained with features 𝑆 ⊆ 𝑁



SHAP Applications
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Additional Applications
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Other applications

• Multi-agent RL

• Ensemble pruning

• Federated learning

• Other topics in explainable AI
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Efficient Computation
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Food for thought

• Data valuation:
• Dataset size: 10 points

• How many models do we need to train?
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Food for thought

• Data valuation:
• Dataset size: 10 points

• How many models do we need to train?

• Need to estimate efficiently and accurately
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Monte Carlo Sampling

• Sample permutation, update the Shapley values, repeat

• Many variations on this (restricted, stratified sampling, etc.)

• For fixed number of iterations, 𝑂(|𝑁|)
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Linear Regression

• Trick: SV is the solution to a weighted linear regression problem

• Find an approximate (biased) estimator in 𝑂(|𝑁|)

• Unbiased estimator exists, but has high variance

22



Other

• Multilinear Extension

• Structure-specific (e.g. Voting game approximation)

• ML-specific (e.g., Gradient Shapley)

• …
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Discussion & Conclusion

24



Limitations

• Shapley value axioms don’t necessarily hold when approximated

• Sometimes produce incorrect results

• More ordinal than cardinal
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Conclusion

• The Shapley value is a powerful tool in a variety of ML problems
• Guarantees fair solutions

• Excellent performance in practice

• Other solution concepts are less widespread but promising

• Wide array of algorithms exist for efficient computation
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