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Learning Goals

* Become familiar with popular ML applications of the Shapley value
* Interpret the Shapley value and its properties in ML contexts
* Recognize the need for efficient computation of the Shapley value

* Understand key properties of common estimators / approximations



Outline

* Applications of the Shapley value in machine learning

e Data Valuation
e Feature Attribution
* Additional applications

* Efficient computation

* Limitations



Applications of the Shapley value in ML
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Data Attribution



Data Attribution

* |dentify the contribution of a data point to performance

* Applications:
 Data valuation/pricing
* Assessing data quality
* |dentifying poisoned or mislabeled data
* Explaining the model

» Several existing approaches: leave-one-out, influence functions
* Most recently: data Shapley



Data Attribution — a coalitional game!

* Players (N): training set
e Characteristic function (v):

v(S) = performance of the model trainedon S € N

* Performance

* measured by log-likelihood, accuracy, ...
* on a test dataset or an individual test data point



Data Shapley

e Desirable fairness properties: analogues of Shapley axioms!

* Ex: Points i, j with identical contributions have attributions ¢; = ¢;

Use the Shapley value to quantify a point’s contribution



Data Shapley: Results
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Other Solution Concepts — Beta Shapley

* Shapley values can be seen as computing

Average marginal
contribution among

= 1 — subsets of size k
¢; = z —
n
k=1

* Semi-values: compute

e Satisfy symmetry, dummy player, and additivity!?
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Other Solution Concepts — The Core
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Figures from “If You Like Shapley Then You’ll Love the Core” (Yan and Procaccia 2021)



Feature Attribution



Feature Attribution

* Players: features of the data
e Characteristic function:

v(S) = performance of the model trained with features S € N

e Similar axiomatic motivation

* Original application: Feature selection (cohen 2007)

* Popular application: Interpretable ML (Lundberg and Lee 2017)
e SHAP: 11,563 citations



SHAP Applications

Interpretable and accurate fine-grained recognition via region grouping
Z Huang, Y Li - Proceedings of the IEEE/CVF Conference ..., 2020 - openaccess.thecvf.com

We present an interpretable deep model for fine-grained visual recognition. At the core of

our method lies the integration of region-based part discovery and attribution within a deep ...

Interpretable XGBoost-SHAP machine-learning model for shear strength
prediction of squat RC walls
DC Feng, WJ Wang, S Mangalathu... - Journal of Structural ..., 2021 - ascelibrary.org

RC shear walls are commonly used as lateral load-resisting elements in seismic regions,
and the estimation of their shear strengths can become simultaneously design-critical and ...

™ML Initial whole-genome sequencing and analysis of the host genetic
contribution to COVID-19 severity and susceptibility

F Wang, S Huang, R Gao, Y Zhou, C Lai, Z Li, W Xian... - Cell discovery, 2020 - nature.com

The COVID-19 pandemic has accounted for millions of infections and hundreds of thousand

deaths worldwide in a short-time period. The patients demonstrate a great diversity in ...
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Additional Applications



Other applications

* Multi-agent RL
* Ensemble pruning
* Federated learning

* Other topics in explainable Al



Efficient Computation



Food for thought

e Data valuation:
* Dataset size: 10 points
* How many models do we need to train?



Food for thought

e Data valuation:
* Dataset size: 10 points
* How many models do we need to train?

* Need to estimate efficiently and accurately
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Monte Carlo Sampling

 Sample permutation, update the Shapley values, repeat
* Many variations on this (restricted, stratified sampling, etc.)

* For fixed number of iterations, O(|N|)



Linear Regression

* Trick: SV is the solution to a weighted linear regression problem
* Find an approximate (biased) estimator in O(|N|)

* Unbiased estimator exists, but has high variance



Other

* Multilinear Extension
e Structure-specific (e.g. Voting game approximation)

* ML-specific (e.g., Gradient Shapley)



Discussion & Conclusion



Limitations

* Shapley value axioms don’t necessarily hold when approximated
* Sometimes produce incorrect results

e More ordinal than cardinal
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Conclusion

* The Shapley value is a powerful tool in a variety of ML problems

 Guarantees fair solutions
* Excellent performance in practice

e Other solution concepts are less widespread but promising

* Wide array of algorithms exist for efficient computation
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